首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64047篇
  免费   5443篇
  国内免费   2806篇
工业技术   72296篇
  2024年   137篇
  2023年   1072篇
  2022年   1593篇
  2021年   2397篇
  2020年   1930篇
  2019年   1648篇
  2018年   1835篇
  2017年   2070篇
  2016年   1863篇
  2015年   2516篇
  2014年   3181篇
  2013年   3917篇
  2012年   4022篇
  2011年   4539篇
  2010年   3905篇
  2009年   3771篇
  2008年   3885篇
  2007年   3551篇
  2006年   3581篇
  2005年   3097篇
  2004年   2077篇
  2003年   1884篇
  2002年   1787篇
  2001年   1559篇
  2000年   1560篇
  1999年   1722篇
  1998年   1287篇
  1997年   1082篇
  1996年   982篇
  1995年   885篇
  1994年   730篇
  1993年   533篇
  1992年   424篇
  1991年   304篇
  1990年   248篇
  1989年   175篇
  1988年   156篇
  1987年   96篇
  1986年   70篇
  1985年   47篇
  1984年   35篇
  1983年   30篇
  1982年   26篇
  1981年   20篇
  1980年   16篇
  1979年   11篇
  1978年   4篇
  1977年   4篇
  1976年   7篇
  1902年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The effect of moderate pulsed electric fields (MPEF) strength on autolysis of Saccharomyces cerevisiae was evaluated in this study. After exposure to MPEF with intensity of 7 kV cm−1 for 4 ms, the integrity of the cell wall was obviously destroyed and the inactivation of S. cerevisiae reached 99.43%. During the subsequent 42-h autolysis process, the release of free α-amino nitrogen of MPEF-treated cells, as well as extracellular protease activity, was significantly (P < 0.05) higher than that of untreated cells. Moreover, exposure to 7 kV cm−1 led to an increase of the total amino acid of 149.36%. In particular, the content of aspartic acid and glutamic acid which are important umami flavour precursors increased by 232.55% and 209.40%, respectively. These results indicate that MPEF will be an effective method to accelerate autolysis of S. cerevisiae for obtaining high-quality yeast extract as flavour enhancers and nutrition supplements.  相似文献   
62.
Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) was employed to investigate free phenols that were released from purple sweet potato (PSP) by alkaline, acid and enzymatic hydrolysis. Four phenolic acids, including ferulic, isoferulic, 4-hydroxybenzoic and caffeic acids, were identified. Based on their effects on the characteristics of purple sweet potato starch (PSPS), the four phenolic acids were studied. Furthermore, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT–IR) and X-ray diffraction (XRD) techniques were employed to explore the microstructures of the complexes of the phenolic acids and PSPS. The obtained results demonstrated that the pasting, thermal, retrogradation, as well as digestive properties of PSPS were all influenced by the phenolic acids which interacted with PSPS through noncovalent hydrogen bonds. The influence of the four phenolic acids on the properties of PSPS was in the descending order: 4-hydroxybenzoic acid > ferulic acid > caffeic acid > isoferulic acid.  相似文献   
63.
随着吊装重物的大型化,单卷扬单吊钩的形式已不能提供足够的起重力矩来吊取重物,工程上常采用多卷扬单吊钩的吊取形式.但卷扬系统各自单独的液压控制系统常常会存在泄漏、参数不一致和比例阀死区等问题,导致马达输出角度之间存在同步误差.同时,卷筒平均半径的不一致和吊钩存在的初始角度误差也会导致钢丝绳出绳长度不一致,进而导致吊钩发生倾斜,存在安全问题.基于四卷扬单吊钩的形式,提出了将四卷扬系统分为两组,组间以吊钩水平倾角数据作为反馈量采用交叉耦合控制,系统内采用马达转角数据作为反馈量,采用主从控制的控制方法,利用常规PID和滑模变结构分别进行控制.仿真研究表明,此种控制系统可以很好地消除吊钩存在水平倾角的问题,控制系统的控制性能较好,鲁棒性较强.  相似文献   
64.
Gd doped La0.8Sr0.2MnO3 (La0.8-xGdxSr0.2MnO3, LGSMO) ceramics were prepared by a sol-gel method. X-ray diffraction (XRD) patterns showed that all samples exhibited distorted perovskite structures, R3c. When the Gd3+ content x > 0.03, the crystal structure changed to orthorhombic, Pnma. Scanning electron microscopy (SEM) images showed that the ceramics characterize high density and grain boundary connectivity, and higher Gd3+ doping decreased the grain size from 26.72 μm to 7.42 μm. The temperature dependence of resistivity showed a transition from a low-temperature metal to a high-temperature insulator. The resistivity increased with Gd doping content, and the metal-insulator transition temperature, TP, increased first and then decreased, while the temperature coefficient of resistance (TCR) of the samples first decreased and then increased with Gd3+, and the magnetoresistance (MR) increased first and then decreased. The peak TCR at x = 0.06 was 5.18%·K?1, and MR at 0.04 was 34.57%. The electrical transport properties of the ceramics were explained based on the double exchange (DE) interaction mechanism. The obtained material may have application prospects in magnetic devices and infrared detectors.  相似文献   
65.
LiCuNb3O9 has been reported newly a colossal permittivity (CP) perovskite, in which the B-site NbO6 octahedra play a bridging role in the polaron hopping. However, how the A-site modification affects the origin of the polarons and further the CP behaviours remains unexplored. To this end, A-site Ca2+ was incorporated to form Li1-xCaxCuNb3O9, and the local states, dielectric relaxations and conduction behaviours were comprehensively studied. The substitution induces the polyvalent Cu cations, i.e. Cu+/Cu2+/Cu3+. Bond valence sum calculations imply that Cu2+ and Cu3+ are underbonded, and Cu+ is overbonded, while B-site Nb5+ shows slightly different with theoretical pentavalence. All the compositions exhibit a similarly room-temperature CP response, but present two dielectric relaxations, i.e. TR1:170–300 K and TR2:260–400 K. Comprehensive investigations on universal dielectric response and bulk dc conductivity indicate that the TR1 follows the variable-range-hopping where the electron hopping between the mixed Cu+/Cu2+, while TR2 contributes from the Cu3+ nearest neighbor hopping.  相似文献   
66.
Hexagonal rare-earth ferrites (h-RFeO3) have attracted much scientific attention due to their room-temperature multiferroicity. However, it is still a hard job to obtain h-RFeO3 bulk materials because of the meta-stability of such hexagonal phase, and the evaluation of room-temperature ferroelectric and magnetoelectric characteristics in such materials is also a challengeable issue. In the present work, Yb1−xInxFeO3 ceramics with the stable hexagonal structure were obtained by introducing chemical pressure, where the unique ferroelectric domain structures of sixfold vortex combined with tenfold vortex with a typical size of ~400 nm were determined. Symmetry of the present system evolved from centrosymmetric orthorhombic Pbnm (x = 0–0.4) to non-centrosymmetric hexagonal P63cm (x = 0.5 and 0.6) with a ferroelectric polarization up to 3.2 μC/cm2, and finally to centrosymmetric hexagonal P63/mmc (x = 0.7 and 0.8). The Curie point decreased monotonically from 723 K to a temperature below room temperature with increasing x, and the antiferromagnetic phase transition above room temperature was determined for all compositions. Meanwhile, a large linear magnetoelectric coefficient (αME) up to 0.96 mV/cm Oe was obtained at room temperature, and this indicated the great application potential for magnetoelectric devices.  相似文献   
67.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   
68.
Rapid and sensitive point-of-care testing (POCT) is an extremely critical mission in practical applications, especially for rigorous military medicine, home health care, and in the third world. Here, we report a visual POCT method for adenosine triphosphate (ATP) detection based on Taylor rising in the corner of quadratic geometries between two rod surfaces. We discuss the principle of Taylor rising, demonstrating that it is significantly influenced by contact angle, surface tension, and density of the sample, which are controlled by ATP-dependent rolling circle amplification (RCA). In the presence of ATP, RCA reaction effectively suppresses Taylor-rising behavior, due to the increased contact angle, density, and decreased surface tension. Without addition of ATP, untriggered RCA reaction is favorable for Taylor rising, resulting in a significant height. With this proposed method, visual sensitive detection of ATP without the aid of other instruments is realized with only a 5 μL droplet, which has good selectivity and a low detection limit (17 nM). Importantly, this visual method provides a promising POCT tool for user-friendly molecular diagnostics.  相似文献   
69.
In this work, gallium doped copper sulfide (Ga-doped CuS) nanocrystals were prepared using a solvothermal method. The effects of Ga doping on the crystal structures, chemical composition, morphology, optical properties and thermal performance of copper sulfide (CuS) were investigated. The Ga-doped CuS nanocrystals had a hexagonal structure comparable to that of pure CuS. The Cu+/Cu2+ ratio first decreased and then increased with increasing Ga3+ doping. Both CuS and Ga-doped CuS exhibited nanoplate and nanorod morphologies. The visible transmittance of the Ga-doped CuS films was in the range of 61–77.1%. Importantly, the near-infrared (NIR) shielding performance of the films can be tuned by adjusting the concentration of the Ga dopant. The NIR shielding value of the optimal Ga-doped CuS film was 72.4%, which was approximately 1.5 times as high as that of the pure CuS film. This can be ascribed to the enhanced plasmonic NIR absorption that resulted from an increase in the hole concentration after doping with Ga3+ ions. In the thermal performance test, the Ga-doped CuS film lowered the interior temperature of the heat box by 9.1 °C. Therefore, the integration of good visible transmittance and high NIR shielding performance make the Ga-doped CuS nanocrystals a promising candidate for energy-efficient window coatings.  相似文献   
70.
Normalizing the tumor-induced immune deficiency in the immunosuppressive tumor microenvironment (TME) through increasing the efficient infiltration and activation of antitumoral immunity in TME is the core of promising immunotherapy. Herein, a Cyclo(Arg-Gly-Asp-d -Phe-Lys) (RGD) peptides-modified combinatorial immunotherapy system based on the self-assembly of the nanoparticles named RGD-DMA composed of RGD-PEG-PLA, methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) and 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) is used to codeliver the immunostimulatory chemokine CCL19-encoding plasmid DNA (CCL19 pDNA) and immune checkpoint ligand PD-L1 inhibitor (BMS-1). The RGD-DMA/pCCL19-BMS-1 system not only exhibited significant inhibition of tumor progression but also induced locally high concentrations of immunostimulatory cytokines at tumor sites without causing an obviously systemic inflammatory response. The immunosuppressive TME is efficaciously reshaped by the coadministration of RGD-DMA/pCCL19 and BMS-1, as indicated by the activated T lymphocytes, increased intratumoral-infiltration of mature dendritic cells (DCs), and the repolarization of macrophages from pro-tumoral M2-phenotype toward tumoricidal M1-phenotype. The upregulated PD-L1 expression at tumor sites caused by the increased IFN-γ levels after immunostimulatory gene therapy further demonstrated the synergistic effects of BMS-1 in counteracting the inhibitory role of PD-L1 expression in antitumor immunity. Therefore, the combination of immunostimulating therapy and immune checkpoint inhibitor that synergistically target multiple immune regulatory pathways demonstrates significant potential as a novel immunotherapy approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号